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The problem of Iocalized vibration modes on a polymer chain with a symmetry breaking 
defect is formulated as a finite sum of exponentially decaying waves ou the po!ymer. Applying 
a set of similarity and unitary transformations and using the singular value decomposition 
technique, the size of the problem is reduced to reiatively small dimensions as compared to 
the iarge size of the original set of equations for propagating modes on the cii.ain. A mudifica- 
ticn of the polynomial eigenvalue problem converts the algebraic system to a simple elgen- 
value problem which may be diagonalized to give eigenvectors of diRerent decaying waves for 
an expansion set to describe general local&d excitations. Applicalion of proper boundary 
cnndirions at the site of broken symmetry leads to determination of the frequencies 01 the 
localized modes and corresponding eigenvector e?tpansion. Possible applications of the 
algorithm 10 various defect problems on a polymer chain are diswssed and some preliminary 
result on a particular defect are presented. mid 1991 Academic Press. Ins. 

I. INTRODUCTION 

An infinite polymer chain, with infinitely repealed monomer&, possesses a tracs- 

lational symmetry. This translational symmetry makes the calculation of vibration& 
properties of the system easier. The chain can be viewed as a one-dimensional 
periodic lattice with a monomer as its unit ceil. This leads to a set of equationrs of 
motion equal in number to the number of degrees of freedom N in a monomer. For 
a typical polymer this number itself may be quite large. This set of equations of 
motion has as its solutions harmonic propagating waves corresponding to the 
iniinite extent of the chain. These ideas, along with the harmonic approximation, 
have long been used to calculate the vibrational phonon modes of DNA 
biopolymers [I]: in which N is at least 123. Such a calculation leads to the vibra- 
tionai spectrum of the system as a relation between the frequency CO of a mode and 
the wave-vector k (in case of a double helical DNA polymer the equivalent of 
the phase angle f3). 

In real experimental situations the polymer chains are not infinite in length. The 
free ends of a finite chain are expected to affect the observable properties of the 
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system. Likewise a defect at some site on the polymer chain may also modify the 
physical properties of the system. In homopolymers like DNA or RNA a defect at 
some site is of much biological importance as it may play a significant role in the 
biological function of the system. For example, a defect in the base sequence or a 
missing base can give rise to completely different genetical information processing 
in these important biopolymers. Therefore, a study of the vibrational properties of 
such homopolyers or copolymers with some type of defects becomes important and 
deserves very careful theoretical developments. 

For a polymer chain with a defect the translational symmetry is broken and one 
loses the simplifications arising from it. Symmetry breaking introduces new types of 
motion with relatively large amplitudes at the defect site, decaying to zero far from 
the defect. These localized excitations cannot be treated with the periodic boundary 
conditions used for the infinite chain. The simplest example of such a defect is a 
severed chain with a free end. Green’s function-based algorithms have been 
developed for such a chain to calculate the localized end modes [2]. However, 
these algorithms involve integrations over the full spectrum of infinite chain modes. 
As a practical matter, the farther from the defect you study, the more finely spaced 
the mesh of calculated infinite chain modes must be, thus quickly setting a limit on 
applicability of the technique. Further: such Green’s function-based methods may 
become very awkward to extend to other, more complex types of defects. 

In a polymer chain with a defect, the interesting boundary conditions may be 
quite different from those for a pure infinite polymer. In addition to propagating 
waves of constant amplitude, a polymer chain supports exponentially growing or 
decaying solutions showing a rather richer variety of frequencies and propagation 
constants. One can, therefore, formulate the problem of localized excitations in 
terms of a number of exponentially decaying waves with finite amplitudes at the 
defect site, dying away to either side of the defect. It is expected that there will be 
only a modest number of such solutions, determined by the number of degrees of 
freedom linked to the neighbouring cells across the cell boundaries. This reduces 
the effective computational size of the localized excitation problem to a value 
relatively much smaller than N (the more complex possibilities for propagation 
constant introduce compensatory complications, however). This type of formula- 
tion can be applied to any set of boundary conditions at the defect, and the 
corresponding solutions for the localized excitations can then be found algebraically 
rather than through integration. 

In this paper we present a closed form algorithm to calculate localized excitations 
on a polymer chain with any type of defect. We use the ideas pointed out above and 
construct general solutions as expansions in terms of a small basis set of exponen- 
tially decaying waves. The general formulation presented in Section 2 is inde- 
pendent of defect type. We present a general expansion for the excitations around 
the defect and develop how to extract the localized modes by applying appropriate 
boundary conditions. In Section 3 we present an application of this formalism to 
the semi-infinite polymer chain. We formulate the boundary conditions at the 
severed end of the chain and present closed form expressions which determine the 



localized end modes on such a polymer. In the last section we present our calcc!a- 
Cons and results for a particular polymer and display the behavior of a local mo 
obtained through this calculation 

2. FORMULATION 

Propagating harmonic oscillatory waves on an mfinite polyme: chain are 
described by 

q(m) =q(O) exp(iQrn) C”“: ii’ 

are N-dimensional vectors describing relative displacements of ah the 
a monomer. N= 3M. where M is the number of atoms in one ceil, 17: is 

an integer cell index, and 8 is a reative phase angle. Equations of motion for i-he 
system can be written in matrix form as 

where A is the Nx N matrix, of rank N, of Wooke’s !aw force constants within a 
unit cell, It is assumed that dynamical connections are of no greater range than one 
monomer spacing although generalization of this restraint is possible. 

nts for the connections betweet---say-cell 0 a 
and represents connections across cells 0 and - 1 

very sparse smgular matrices, each of rank II 4 N, u is the m 
is the identity matrix. This problem can be solved, to obtain mode frequencies an6 
the corresponding eigenvector as functions of 8, by direct diagonahzatiot? of the 
total force constant matrix [ 11. 

The waves of Eq. ( 1) assume a certain boundary condition at IE = +_ X. nameiy 
periodicity, appropriate to the translational symmetry situation. Other solutions 
exist, however. satisfying different boundary conditions. Waves with finite 
amplitude at n? = 0, vanishing as )H-+ + #X can also e constructed. A corre- 
sponding wave to Eq. (1) is then 

which decays to the right for positive values of A. 
For a polymer chain with a defect the translational symmetry breaking at the site 

will lead to the existence of exponentially decaylng waves along the chain on ea:her 
side. In this case the normal mode eigenvectors can be expressed as a sum of 
SolutiQns like Eq. (31, 

where the 3, describe the decay of the constituent waves. The most genera: possible 



276 SAXENA, VAN ZANDT, AND SCHROLL 

dynamical solution consists of vectors like (1) and (3) together, in which case the 

terms in (4) represent end corrections to the bulk, infinite chain modes. When 
solutions of the algebraic problem exist containing only terms as in (4) we have a 
purely local mode. The algebraic problem describing the individual component 
wave is now written 

L (Aw21}+zB+~BT]q=0, (5) 

where 

z=exp(iO-d) (6) 

is a complex number describing the decaying waves. For each fixed frequency Q 
there exists a set of allowed z values z1 and corresponding eigenvectors qL. At this 
level the size of the problem is Nx N and the solution cannot be obtained by a 
reltively simple diagonalization. 

As the matrices B and BT describe relatively few connections across cell 
boundaries, they are very sparse. Further, B and BT span complementary subspaces 
in the N-dimensional space spanned by the complete system, since they represent 
connections on the opposite sides of the central unit cell. This fact can be used to 
reduce the effective dimensionality of the problem to a more manageable value. In 
order to achieve this we need to write these matrices in upper block forms by a set 
of similarity transformations. To the set of Eqs. (5) we first apply an orthogonal 
similarity transformation S, moving to a new representation in which B + BT is 
diagonal, 

{A-co’I}+zB+;B’ 1 S.Sq=O, (7) 

to obtain 

{A’-co~I}+zB~+~B~~ q/=0. 1 z (8) 

As a practical, computational matter, we next apply a permutation transformation 
P, which rearranges the coordinate axes in such a way that B’ and BfT have all 
their non-zero elements confined as much as possible to an upper left-hand corner 
block matrix of small dimension 2n x 2n, giving 

A,,+zB,+iB; qo=O, 
1 

(9) 

where 

A, = P1 A’P; - to’1, 

B, = P, B’P:, 

(10) 

(11) 
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qo=P,q’. 

Matrices B, and Bi now have maximum dimension&y 212 corresponding to an 
upper left block matrix of non-zero elements. 

In Eq. (.9) the matrices B, and B;f have their lower hi- 2n rows of elements zero 
and the matrix A, does not depend on Z. Therefore, for any value of -:> a vector qO 
must be orthogonal to all of the lower N- 2n rows of the matrix A,. We proceed 
by generating the space of all such vectors. To generate this type of vector we no~‘v 
construct a singular, auxiliary matrix A, whose topmost 2n rows have all zero 
elements and whose lower N- 2n rows are those of the matrix A,. The needed 
vectors qO span the null space of the matrix A,, that is, 

A,. q, = 0. (131 

The vectors in the null space of a singular matrix can be generated by using rhe 
skgufar vafue decomposition (VW) technique 13). The SVD applied to the matrix 
A, leads to a 2pr-dimensional subspace, spanned by 2tz N-dimensional vectors each 
of which is individually orthogonal to all of the lower !V- 2n rows of A, and there- 
fore also to the corresponding rows of A,. Let us denote these N-dimensiona.l 
vectors by vi (i= 1, 2, . . . . 2n). A vector qO satisfying Eq. (9) can thus be formed as 
a linear combination of v;s writing 

Thus substituting Eq. (14) in Eq. (9) one obtains 

7n r 

C LA,,+;B,+~B+I~= 
i= 1 

Since lower N- 2n rows of B, and Bi are zero and the corresponding rows of A, 
are orthogonal to all v:s, we can project the matrices B,, B;, and A, on to the sub- 
space of 2n vectors v,‘s. Thus Eq. 

i 
Al 

where a is .&r-dimensional vector 

(15) takes the form, in this reduced subspace. 

formed with LI;S as its elements and 
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and 
A’ 

(Bz)~= C (BtT)ik(Vj)k 
k=l 

(19) 

for i, j = 1, 2, . . . . 2n. (vj)k is the k th element of vj. One can see that the original 
Nx N problem as given by Eq. (5) has been reduced to a relatively smaller problem 
of size 2n x 2n. 

As mentioned earlier, the matrices B and BT span complementary spaces, and in 
Eq. (8) we transformed the system to a basis where B + BT is diagonal. Therefore 
matrices B, and B, are singular in the complementary subspaces. In fact B, and B1 
span n-dimensional complementary subspaces and each is singular in the subspace 
spanned by the other. If B, and Bz were non-singular, one could solve Eq. (16) by 
direct application of the “polynomial eigenvalue” technique [4], but some prepara- 
tion is first necessary. In order to sove Eq. (16) we first write it as 

[z2B,+zAI+Bz]a=0. (20) 

In order to reduce this to a simple eigenvalue problem we first need to write the 
matrix B, in an upper (or lower) block diagonal form. Consider the eigenvalues 
and eigenvectors of B,. The transformation UpLB,W diagonalizes B,. Thus we 
write Eq. (20) as 

(21) 

or 

[z’B; + zA; + B;] a’ = 0, (22) 

where 

B; = U-‘B,U, (23) 

B; is a diagonal matrix and has only n non-zero diagonal elements; corre- 
spondingly, 

A; =U-‘ALU, (24) 

B;=U-‘B,U, (25) 

and 

a’=U~-‘a. (26) 

We now apply a permutation transformation P, which rearranges the coordinate 
axes in such a way that all the non-zero (diagonal) elements of B; are confined to 
a lower right-hand n x IZ block. This leads to 

[z2B, + sA2 + B4] b = 0, (27) 



A2 = PIA’&+ 

B, = P,B;P:, 

b = P,a’. 

B, = P,B;P;. 

3 IIOM’ has the block diagona! form 

d is an ?I x n diagonal non-singular matrix with the nonzero eigenvalnes r~f 
elements. Q,, is the rlth-order zero matrix. Now using a tra~sformat~Q~ for 

singular polynomial eigenvalue systems [5] one can rewrite Eq. 127) as the eiger?- 
value problem 

(23: 

where C and are 3~ x 3~ matrices defined as 

En d 

where I,, is the yi x II identity matrix. 
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c is a 3n-dimensional vector defined as 

c=D,b, 

where D, is a 3n x 2n matrix defined by 

I 2n 

D,= kl 0, / zB, 

(36) 

(37) 

and 12,, is the 2n x 217 identity matrix. 
Equation (33) can now be solved first by inverting C and then diagonalizing 

DC-‘. The matrix C can be singular only if a 2n x 2n matrix C’, whose first n rows 
are exactly the same as the corresponding rows of A, and whose lower n rows are 
equal to the corresponding rows of B,, is also singular [ 51. Diagonalizing DC-’ 
by the standard method finally gives the permitted z values and the corresponding 
vectors, c. Since the matrix B, is singular, the matrix D is also singular and has n 
zero eigenvalues. As a result of this, the number of acceptable non-zero solutions 
for z values is exactly equal to 212, the effective dimensionality of the matrix B, in 
Eq. (9). These 2n solutions separate into two groups of n solutions each. One set 
describes waves decaying exponentially to the right of the defect site and the other 
set waves decaying to the left of the defect site. Let us label these solutions by Z: 
and z; with vectors cn+ and CT, respectively, as acceptable solutions of Eq. (33). 
Let 0; and d: represent the values of 0 and d corresponding to z: in accordance 
with the defining equation (6). 

Once we have the set of vectors c: as solutions of Eq. (33) for the values z:, 
applying all the transformations in the reverse order, one can obtain the set of 
vectors a: which are solutions of Eq. (16) for the corresponding z values. These 
transformations can be written as 

a: = UPJGF c:, (38) 

where Gk is a 2n x 3n matrix defined as 

G: = F,‘(D,‘)+, (39) 

with 

FF = [(D;)+D:] -r, (40) 

D; being the same as matrix D, with z replaced with z,:. 
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&i&g the delTinition, Eq. (14) one then obtains the vectors 6, for solutions of 
Eq. (9) as 

q& = 1 (a,.F ),vj. (41 i 
j- 1 

Finally one obtains for the solution of the original problem Eq. (5j the vectors q,f 
as 

q,: = SPTq&. jij?) 

The vector q: represents an exponentially decaying wave of frequency w and com- 
plex phase factor (6’ - id ,t ). A general solution of Eq. ( 5 j for a decaying mode of 
frequency I?) can be formed as a linear combination of all the 2~ solutions obtained 
for the 3: values. Thus the general (localizedj solution (m, w) at frequency 21. if 
one exists. can be written as 

where b: are numerical coefficients chosen to fit the apprprpiate boundary condi- 
tion at the defect site. The solution given by Eq. !43) is a general solution for 
decaying waves with frequency cc). However, all the solutions for any frequency are 
not allowed to propogate along the chain. Application of the appropriate boundary 
conditions, balancing all the symmetry breaking forces at the defect site, determines 
the frequency and corresponding solution for the localized mode around the defect 
site. In the next section we discuss a simple application of the algorithm develop in 
this section. 

3. SEMI-INFINITE POLYMER CHMW 

As an example of the application of the algorithm, we discuss the calculation of 
localized end modes on a semi-infinite polymer chain. This system has been studied 
before [2] and provides a valuable comparison for our results. Consider an infinite 
chain divided in two semi-infinite halves by cutting all the connections across t&e 
cell boundary between cells 0 and - 1. We seek localized end modes on the right 
half of the chain beginning at cell 0. As the left half of the chain is totally dis- 
connected, any forces coming from the severed part of the chain must be zero. This 
defines the appropriate boundary conditions at the cut end in terms of the normal 
interactions. Further, as only the right half of the cham exists, only t 
functions z,’ and qj’ for the waves decaying to the right will be of interesr. In this 
case a general solution for a local mode with frequency o on the half chain can be 
written 

Q+(m, w)= -f: b:q:(,z:)” 

= f’ b’q,+ exp(m(iQX --Li’;+)j. 
i.= I 
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Substituting this solution in the original Nx N equations of motion and then 
equating all the forces from the missing left half of the chain at the 0 th cell to zero, 
one gets the boundary condition 

If there is any frequency for which this boundary condition can be satisfied with 
any b,t # 0 that frequency is a normal mode frequency for a localized excitation, an 
end mode. The corresponding algebraic system is 

B,+b+ =O, 

where B: is the 11 x 11 matrix defined by 

N >v 

(47) 

(BT),,= 1 c (q~)*(BT),(q:)jexp(-(ief -A:)). 
i=l j=l 

(48) 

The vector b’ comprises the coefficients 6:. The existence of a solution is signalled 
by the vanishing of det IB: ( or any of its eigenvalues. This finally leads to the com- 
plete solution for the eigenvector (Eq. (44)) of the localized end mode. 

It should be noted that the localized mode problem in this formalism has been 
reduced to n x n size as compared to the large size Nx N of the original set of 
equations of motion. Further, this method gives the complete eigenvectors of the 
localized modes directly and allows computation of behavior arbitrarily deep into 
the chain. Our earlier investigations [Z] into this problem could yield this informa- 
tion in principle, but only at the computational cost of more and more finely spaced 
infinite chain solutions. This method also lends itself to investigations of other sorts 
of defects. Once the basis functions qA+ are obtained, different boundary solutions 
can be readily expanded, and closed form expressions written down. Unfortunately, 
a scan on w is still required. 

4. CALCULATION AND RESULTS 

We have made numerical calculations, based on the method described in the last 
two sections, for possible localized end modes on a semi-infinite Poly(dA)-Poly(dT) 
B-form DNA polymer. In this case N= 123 and n turns out to be 14. An interesting 
frequency range runs from 70.00 to 73.55 cm ~ I, a band gap in the normal mode 
spectrum of the infinite, perfect Poly(dL4)-Poly(dT) polymer with the force constant 
model used in the present calculation. In the range of frequencies scanned, most of 
the eigenvalues of the boundary condition matrix B,+ as well as its determinant are 
real. In Fig. 1 we have plotted the quantity 

h(o)=Sign[v(i)] xlog[l+ Iv(i)1 x 10’1 (49) 
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70.0 70.5 710 7!.5 72.0 

FIG. 1. Variation of the real-part of one of the eigenvaiues Al of the ma:rix BC+, shown as the 
quanritj- h!u~)= Sign[~,(i)] * log[l+ IT(~)\ x 10’1 plotted as a function of freq>L;ency LLI. 

as a function of frequency o; r(i) is the eigenvalue (real) of the matrix 
changes sign within the frequency range stated above. None of the ot 
values of this matrix pass through zero in this range of frequencies. Figure 2 
displays the quantity 

Sign(D) log{1 + IDI ). i50) 

as a function of frequency o, where D is the determinant (real) of the matrix 
From these two figures one can see that the plotted quantities vanish at the 
frequency 70.41 cm - I, indicating that the boundary condition Eq. (47) is satisfied 
for this frequency. Thus we have found a local mode frequency. En Table I we list 
the values of A:, 0:, and the corresponding coefficients b: 1 which satisfy the 
boundary condition Eq. (47) for this frequency. 

FIG. 2. Variation of the determinant D (real) of the matrix 
log[l+ IDI j as a fmxtion of frequency 0. 
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TABLE I 

Values of d: , #;, and b,’ which satisfy the boundary conditions 
for the local mode at 70.41 cm-’ 

1 

1 - 15.816439 -0.048032 0.013309 0.066880 
2 - 15.180337 0.007213 - 0.009246 -0.053948 
3 -7.011092 -0.000052 -0.009248 -0.077890 
4 -4.715403 0.000006 -0.027370 -0.199343 
5 -4.518871 0.210324 -0.137135 0.045323 
6 -4.518871 -0.210324 0.144305 0.008052 
7 - 3.540579 1.167920 -0.057425 0.585608 
8 - 3.540579 - 1.167920 0.208 143 0.549201 

.9 -2.672197 0.000000 -0.025715 -0.194507 
10 - 1.412505 0.542678 0.015540 -0.204332 
11 - 1.412505 -0.542678 -0.068583 --0.193134 
12 -0.847147 0.000000 0.038675 0.289859 
13 -0.685792 -0.962110 0.047807 -0.010317 
14 -0.685792 0.962110 -0.048806 0.002576 

Wb,; 1 Im(bf ) 

Once the coefficients 6: are known one can construct the vectors Q(m), from 
Eq. (45), for various cells. We chose a typical coordinate i and calculated the ratio 

(51) 

which measures the displacement of the coordinate i in cell m relative to the same 
coordinate in cell 0. For the mode at 70.41 cm-’ this ratio turns out to be essen- 
tially real and decays rapidly with increasing cell number. To display this behavior 
we have plotted in Fig. 3 the quantity 

amp(m) = Sign(Re[a,(m) J) x log{1 + jai(m)] x 106}. (52) 

We find the behavior of amp(m) as expected for a localized mode. It oscillates, with 
decreasing amplitude, for the first few cells and then dies out. The amplitude of 
a,(m) decays to about 1% of its value at the cut within live cells. Thus it is clear 
that this is a well-defined local mode confined within a few cells of the free end. The 
eigenvector Q+(O) at the cut end for this local mode has a strong component along 
the eigenvector of the nearest band edge at 70.02 cm --I. 

This example shows a single local mode in this band gap. Similar scans of other 
ranges of frequency o show other local modes. To find out all possible local modes 
the whole range of frequencies covered by the spectrum of the infinite perfect 
polymer should be scanned. 

This completes our exposition of an algorithm for calculating the localized modes 
on a polymer chain with a defect. We have formulated the problem in terms of 
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I I I I I I 
5 IO 15 20 25 30 

CELL NUMBER . m 

FIG. 3. Variation of the quantity amp(m) with the cd1 number m 

exponentially decaying waves along the chain. By applying the singular vaiue 
decomposition technique, we have reduced the effective size of the problem to a 
relatively small value. Using a set of similarity transformations and a transforma- 
tion for polynomial eigenvalue systems, the system of equations is reduced to a 
simple eigenvalue equation which gives closed form solutions for the exponentially 
decaying waves on the chain. Application of appropriate boundary conditions. 
balancing the resultant symmetry breaking forces at the defect site, leads to the 
determination of the local mode eigenfrequencies and the corresponding eigenvec-. 
tors. An important feature of the method is that it gives the complete eigenvectors 
of the localized modes, leading to a complete physical picture of the motions 
characteristic of the local mode. This feature and the closed form solution. in 
reduced space make this method potentially more useful as compared to other 
existing methods based on perturbativc expansion or Green‘s function based 
algorithms. 

5. DISCUSSON 

In summary, we have developed a method to solve the N x I?/ quadratic eigen- 
value problem of the form 

“^ ! 3.3 : 

where and T are very sparse singular matrices. y using a series of similarity 
transformations and using the polynomial eigenvalue technique IS] we have been 

le to reduce the size of the problem from N x N to fr x n, where PI is the rank of 
or B’. We have obtained experience running the code based on this method for 

a model DNA polymer. where N= 123. On essentially equivalent systems. 
VA% 750, ISI. and Mac II machines, the code runs satisfactorily and leads tc 
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physical solutions for the localized end modes for a semi-infinite DNA polymer. 
Hence this algorithm represents a practical solution to a thorny numerical problem 
and is not merely an exercise in computer theory. For DNA, the size of the problem 
is reduced to 14 x 14 compared to the original 123 x 123. 

As mentioned earlier the method described in this paper can be successfully 
coded and applied to various types of defects on homopolymers and copolymers 
with localized defects, where a finite set of local mode solutions will appear as solu- 
tions. Another possible application of the method may be in surface physics, for 
example, for obtaining the localized surface modes in a three-dimensional semi- 
infinite solid, where a band of frequencies would appear as a final solution of the 
problem. We have not developed this application. 
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